You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
561 lines
22 KiB
561 lines
22 KiB
import os |
|
import base64 |
|
import re |
|
from typing import Literal, Optional |
|
import requests |
|
import tiktoken |
|
from ollama import ( |
|
Client, |
|
AsyncClient, |
|
ResponseError, |
|
ChatResponse, |
|
Tool, |
|
Options, |
|
) |
|
|
|
import env_manager |
|
from colorprinter.print_color import * |
|
|
|
env_manager.set_env() |
|
|
|
tokenizer = tiktoken.get_encoding("cl100k_base") |
|
|
|
|
|
class LLM: |
|
""" |
|
LLM class for interacting with an instance of Ollama. |
|
|
|
Attributes: |
|
model (str): The model to be used for response generation. |
|
system_message (str): The system message to be used in the chat. |
|
options (dict): Options for the model, such as temperature. |
|
messages (list): List of messages in the chat. |
|
max_length_answer (int): Maximum length of the generated answer. |
|
chat (bool): Whether the chat mode is enabled. |
|
chosen_backend (str): The chosen backend server for the API. |
|
client (Client): The client for synchronous API calls. |
|
async_client (AsyncClient): The client for asynchronous API calls. |
|
tools (list): List of tools to be used in generating the response. |
|
|
|
Methods: |
|
__init__(self, system_message, temperature, model, max_length_answer, messages, chat, chosen_backend): |
|
Initializes the LLM class with the provided parameters. |
|
|
|
get_model(self, model_alias): |
|
Retrieves the model name based on the provided alias. |
|
|
|
count_tokens(self): |
|
Counts the number of tokens in the messages. |
|
|
|
get_least_conn_server(self): |
|
Retrieves the least connected server from the backend. |
|
|
|
generate(self, query, user_input, context, stream, tools, images, model, temperature): |
|
Generates a response based on the provided query and options. |
|
|
|
make_summary(self, text): |
|
Generates a summary of the provided text. |
|
|
|
read_stream(self, response): |
|
Handles streaming responses. |
|
|
|
async_generate(self, query, user_input, context, stream, tools, images, model, temperature): |
|
Asynchronously generates a response based on the provided query and options. |
|
|
|
prepare_images(self, images, message): |
|
""" |
|
|
|
def __init__( |
|
self, |
|
system_message: str = "You are an assistant.", |
|
temperature: float = 0.01, |
|
model: Optional[ |
|
Literal["small", "standard", "vision", "reasoning", "tools"] |
|
] = "standard", |
|
max_length_answer: int = 4096, |
|
messages: list[dict] = None, |
|
chat: bool = True, |
|
chosen_backend: str = None, |
|
tools: list = None, |
|
) -> None: |
|
""" |
|
Initialize the assistant with the given parameters. |
|
|
|
Args: |
|
system_message (str): The initial system message for the assistant. Defaults to "You are an assistant.". |
|
temperature (float): The temperature setting for the model, affecting randomness. Defaults to 0.01. |
|
model (Optional[Literal["small", "standard", "vision", "reasoning"]]): The model type to use. Defaults to "standard". |
|
max_length_answer (int): The maximum length of the generated answer. Defaults to 4096. |
|
messages (list[dict], optional): A list of initial messages. Defaults to None. |
|
chat (bool): Whether the assistant is in chat mode. Defaults to True. |
|
chosen_backend (str, optional): The backend server to use. If not provided, the least connected server is chosen. |
|
|
|
Returns: |
|
None |
|
""" |
|
|
|
self.model = self.get_model(model) |
|
self.call_model = ( |
|
self.model |
|
) # This is set per call to decide what model that was actually used |
|
self.system_message = system_message |
|
self.options = {"temperature": temperature} |
|
self.messages = messages or [{"role": "system", "content": self.system_message}] |
|
self.max_length_answer = max_length_answer |
|
self.chat = chat |
|
|
|
if not chosen_backend: |
|
chosen_backend = self.get_least_conn_server() |
|
self.chosen_backend = chosen_backend |
|
|
|
|
|
headers = { |
|
"Authorization": f"Basic {self.get_credentials()}", |
|
"X-Chosen-Backend": self.chosen_backend, |
|
} |
|
self.host_url = os.getenv("LLM_API_URL").rstrip("/api/chat/") |
|
self.host_url = 'http://192.168.1.12:3300' #! Change back when possible |
|
self.client: Client = Client(host=self.host_url, headers=headers, timeout=120) |
|
self.async_client: AsyncClient = AsyncClient() |
|
|
|
def get_credentials(self): |
|
# Initialize the client with the host and default headers |
|
credentials = f"{os.getenv('LLM_API_USER')}:{os.getenv('LLM_API_PWD_LASSE')}" |
|
return base64.b64encode(credentials.encode()).decode() |
|
|
|
def get_model(self, model_alias): |
|
|
|
models = { |
|
"standard": "LLM_MODEL", |
|
"small": "LLM_MODEL_SMALL", |
|
"vision": "LLM_MODEL_VISION", |
|
"standard_64k": "LLM_MODEL_LARGE", |
|
"reasoning": "LLM_MODEL_REASONING", |
|
"tools": "LLM_MODEL_TOOLS", |
|
} |
|
model = os.getenv(models.get(model_alias, "LLM_MODEL")) |
|
self.model = model |
|
return model |
|
|
|
def count_tokens(self): |
|
num_tokens = 0 |
|
for i in self.messages: |
|
for k, v in i.items(): |
|
if k == "content": |
|
if not isinstance(v, str): |
|
v = str(v) |
|
tokens = tokenizer.encode(v) |
|
num_tokens += len(tokens) |
|
return int(num_tokens) |
|
|
|
def get_least_conn_server(self): |
|
try: |
|
response = requests.get("http://192.168.1.12:5000/least_conn") |
|
response.raise_for_status() |
|
# Extract the least connected server from the response |
|
least_conn_server = response.headers.get("X-Upstream-Address") |
|
return least_conn_server |
|
except requests.RequestException as e: |
|
print_red("Error getting least connected server:", e) |
|
return None |
|
|
|
def generate( |
|
self, |
|
query: str = None, |
|
user_input: str = None, |
|
context: str = None, |
|
stream: bool = False, |
|
tools: list = None, |
|
images: list = None, |
|
model: Optional[ |
|
Literal["small", "standard", "vision", "reasoning", "tools"] |
|
] = None, |
|
temperature: float = None, |
|
messages: list[dict] = None, |
|
format = None |
|
): |
|
""" |
|
Generate a response based on the provided query and context. |
|
Parameters: |
|
query (str): The query string from the user. |
|
user_input (str): Additional user input to be appended to the last message. |
|
context (str): Contextual information to be used in generating the response. |
|
stream (bool): Whether to stream the response. |
|
tools (list): List of tools to be used in generating the response. |
|
images (list): List of images to be included in the response. |
|
model (Optional[Literal["small", "standard", "vision", "tools"]]): The model type to be used. |
|
temperature (float): The temperature setting for the model. |
|
messages (list[dict]): List of previous messages in the conversation. |
|
format (Optional[BaseModel]): The format of the response. |
|
|
|
Returns: |
|
str: The generated response or an error message if an exception occurs. |
|
""" |
|
print_yellow("GENERATE") |
|
# Prepare the model and temperature |
|
model = self.get_model(model) if model else self.model |
|
if model == self.get_model('tools'): |
|
stream = False |
|
temperature = temperature if temperature else self.options["temperature"] |
|
|
|
if messages: |
|
messages = [ |
|
{"role": i["role"], "content": re.sub(r"\s*\n\s*", "\n", i["content"])} |
|
for i in messages |
|
] |
|
message = messages.pop(-1) |
|
query = message["content"] |
|
self.messages = messages |
|
else: |
|
# Normalize whitespace and add the query to the messages |
|
query = re.sub(r"\s*\n\s*", "\n", query) |
|
message = {"role": "user", "content": query} |
|
|
|
# Handle images if any |
|
if images: |
|
message = self.prepare_images(images, message) |
|
model = self.get_model("vision") |
|
|
|
self.messages.append(message) |
|
|
|
# Prepare headers |
|
headers = {"Authorization": f"Basic {self.get_credentials()}"} |
|
if self.chosen_backend and model not in [self.get_model("vision"), self.get_model("tools"), self.get_model("reasoning")]: #TODO Maybe reasoning shouldn't be here. |
|
headers["X-Chosen-Backend"] = self.chosen_backend |
|
|
|
if model == self.get_model("small"): |
|
headers["X-Model-Type"] = "small" |
|
if model == self.get_model("tools"): |
|
headers["X-Model-Type"] = "tools" |
|
elif model == self.get_model("reasoning"): |
|
headers["X-Model-Type"] = "reasoning" |
|
|
|
# Prepare options |
|
options = Options(**self.options) |
|
options.temperature = temperature |
|
|
|
#TODO This is a bit of a hack to get the reasoning model to work. It should be handled better. |
|
# # Adjust the options for long messages |
|
# if self.chat or len(self.messages) > 15000 and model != self.get_model("tools"): |
|
# num_tokens = self.count_tokens() |
|
# if num_tokens > 8000: |
|
# model = self.get_model("standard_64k") |
|
# print_purple("Switching to large model") |
|
# headers["X-Model-Type"] = "large" |
|
|
|
# Call the client.chat method |
|
try: |
|
self.call_model = model |
|
self.client: Client = Client(host=self.host_url, headers=headers, timeout=300) #! |
|
#print_rainbow(self.client._client.__dict__) |
|
print_yellow("Model used in call:", model) |
|
# if headers: |
|
# self.client.headers.update(headers) |
|
|
|
response = self.client.chat( |
|
model=model, |
|
messages=self.messages, |
|
tools=tools, |
|
stream=stream, |
|
options=options, |
|
keep_alive=3600 * 24 * 7, |
|
format=format |
|
) |
|
|
|
except ResponseError as e: |
|
print_red("Error!") |
|
print(e) |
|
return "An error occurred." |
|
# print_rainbow(response.__dict__) |
|
# If user_input is provided, update the last message |
|
|
|
if user_input: |
|
if context: |
|
if len(context) > 2000: |
|
context = self.make_summary(context) |
|
user_input = ( |
|
f"{user_input}\n\nUse the information below to answer the question.\n" |
|
f'"""{context}"""\n[This is a summary of the context provided in the original message.]' |
|
) |
|
system_message_info = "\nSometimes some of the messages in the chat history are summarised, then that is clearly indicated in the message." |
|
if system_message_info not in self.messages[0]["content"]: |
|
self.messages[0]["content"] += system_message_info |
|
self.messages[-1] = {"role": "user", "content": user_input} |
|
|
|
# self.chosen_backend = self.client.last_response.headers.get("X-Chosen-Backend") |
|
|
|
# Handle streaming response |
|
if stream: |
|
return self.read_stream(response) |
|
else: |
|
# Process the response |
|
if isinstance(response, ChatResponse): |
|
result = response.message.content.strip('"') |
|
if '</think>' in result: |
|
result = result.split('</think>')[-1] |
|
self.messages.append( |
|
{"role": "assistant", "content": result.strip('"')} |
|
) |
|
if tools and not response.message.get("tool_calls"): |
|
print_yellow("No tool calls in response".upper()) |
|
if not self.chat: |
|
self.messages = [self.messages[0]] |
|
return response.message |
|
else: |
|
print_red("Unexpected response type") |
|
return "An error occurred." |
|
|
|
def make_summary(self, text): |
|
# Implement your summary logic using self.client.chat() |
|
summary_message = { |
|
"role": "user", |
|
"content": f'Summarize the text below:\n"""{text}"""\nRemember to be concise and detailed. Answer in English.', |
|
} |
|
messages = [ |
|
{ |
|
"role": "system", |
|
"content": "You are summarizing a text. Make it detailed and concise. Answer ONLY with the summary. Don't add any new information.", |
|
}, |
|
summary_message, |
|
] |
|
try: |
|
response = self.client.chat( |
|
model=self.get_model("small"), |
|
messages=messages, |
|
options=Options(temperature=0.01), |
|
keep_alive=3600 * 24 * 7, |
|
) |
|
summary = response.message.content.strip() |
|
print_blue("Summary:", summary) |
|
return summary |
|
except ResponseError as e: |
|
print_red("Error generating summary:", e) |
|
return "Summary generation failed." |
|
|
|
def read_stream(self, response): |
|
""" |
|
Yields tuples of (chunk_type, text). The first tuple is ('thinking', ...) |
|
if in_thinking is True and stops at </think>. After that, yields ('normal', ...) |
|
for the rest of the text. |
|
""" |
|
thinking_buffer = "" |
|
in_thinking = self.call_model == self.get_model("reasoning") |
|
first_chunk = True |
|
prev_content = None |
|
|
|
for chunk in response: |
|
if not chunk: |
|
continue |
|
content = chunk.message.content |
|
|
|
# Remove leading quote if it's the first chunk |
|
if first_chunk and content.startswith('"'): |
|
content = content[1:] |
|
first_chunk = False |
|
|
|
if in_thinking: |
|
thinking_buffer += content |
|
if "</think>" in thinking_buffer: |
|
end_idx = thinking_buffer.index("</think>") + len("</think>") |
|
yield ("thinking", thinking_buffer[:end_idx]) |
|
remaining = thinking_buffer[end_idx:].strip('"') |
|
if chunk.done and remaining: |
|
yield ("normal", remaining) |
|
break |
|
else: |
|
prev_content = remaining |
|
in_thinking = False |
|
else: |
|
if prev_content: |
|
yield ("normal", prev_content) |
|
prev_content = content |
|
|
|
if chunk.done: |
|
if prev_content and prev_content.endswith('"'): |
|
prev_content = prev_content[:-1] |
|
if prev_content: |
|
yield ("normal", prev_content) |
|
break |
|
|
|
self.messages.append({"role": "assistant", "content": ""}) |
|
|
|
async def async_generate( |
|
self, |
|
query: str = None, |
|
user_input: str = None, |
|
context: str = None, |
|
stream: bool = False, |
|
tools: list = None, |
|
images: list = None, |
|
model: Optional[Literal["small", "standard", "vision"]] = None, |
|
temperature: float = None, |
|
): |
|
""" |
|
Asynchronously generates a response based on the provided query and other parameters. |
|
|
|
Args: |
|
query (str, optional): The query string to generate a response for. |
|
user_input (str, optional): Additional user input to be included in the response. |
|
context (str, optional): Context information to be used in generating the response. |
|
stream (bool, optional): Whether to stream the response. Defaults to False. |
|
tools (list, optional): List of tools to be used in generating the response. Will set the model to 'tools'. |
|
images (list, optional): List of images to be included in the response. |
|
model (Optional[Literal["small", "standard", "vision", "tools"]], optional): The model to be used for generating the response. |
|
temperature (float, optional): The temperature setting for the model. |
|
|
|
Returns: |
|
str: The generated response or an error message if an exception occurs. |
|
|
|
Raises: |
|
ResponseError: If an error occurs during the response generation. |
|
|
|
Notes: |
|
- The function prepares the model and temperature settings. |
|
- It normalizes whitespace in the query and handles images if provided. |
|
- It prepares headers and options for the request. |
|
- It adjusts options for long messages and calls the async client's chat method. |
|
- If user_input is provided, it updates the last message. |
|
- It updates the chosen backend based on the response headers. |
|
- It handles streaming responses and processes the response accordingly. |
|
- It's not neccecary to set model to 'tools' if you provide tools as an argument. |
|
""" |
|
print_yellow("ASYNC GENERATE") |
|
# Normaliz e whitespace and add the query to the messages |
|
query = re.sub(r"\s*\n\s*", "\n", query) |
|
message = {"role": "user", "content": query} |
|
self.messages.append(message) |
|
|
|
# Prepare the model and temperature |
|
model = self.get_model(model) if model else self.model |
|
temperature = temperature if temperature else self.options["temperature"] |
|
|
|
# Prepare options |
|
options = Options(**self.options) |
|
options.temperature = temperature |
|
|
|
# Prepare headers |
|
headers = {} |
|
|
|
# Set model depending on the input |
|
if images: |
|
message = self.prepare_images(images, message) |
|
model = self.get_model("vision") |
|
elif tools: |
|
model = self.get_model("tools") |
|
headers["X-Model-Type"] = "tools" |
|
tools = [Tool(**tool) if isinstance(tool, dict) else tool for tool in tools] |
|
elif self.chosen_backend and model not in [self.get_model("vision"), self.get_model("tools"), self.get_model("reasoning")]: |
|
headers["X-Chosen-Backend"] = self.chosen_backend |
|
elif model == self.get_model("small"): |
|
headers["X-Model-Type"] = "small" |
|
|
|
# Adjust options for long messages |
|
if self.chat or len(self.messages) > 15000: |
|
num_tokens = self.count_tokens() + self.max_length_answer // 2 |
|
if num_tokens > 8000 and model not in [ |
|
self.get_model("vision"), |
|
self.get_model("tools"), |
|
]: |
|
model = self.get_model("standard_64k") |
|
headers["X-Model-Type"] = "large" |
|
|
|
# Call the async client's chat method |
|
try: |
|
response = await self.async_client.chat( |
|
model=model, |
|
messages=self.messages, |
|
headers=headers, |
|
tools=tools, |
|
stream=stream, |
|
options=options, |
|
keep_alive=3600 * 24 * 7, |
|
) |
|
except ResponseError as e: |
|
print_red("Error!") |
|
print(e) |
|
return "An error occurred." |
|
|
|
# If user_input is provided, update the last message |
|
if user_input: |
|
if context: |
|
if len(context) > 2000: |
|
context = self.make_summary(context) |
|
user_input = ( |
|
f"{user_input}\n\nUse the information below to answer the question.\n" |
|
f'"""{context}"""\n[This is a summary of the context provided in the original message.]' |
|
) |
|
system_message_info = "\nSometimes some of the messages in the chat history are summarised, then that is clearly indicated in the message." |
|
if system_message_info not in self.messages[0]["content"]: |
|
self.messages[0]["content"] += system_message_info |
|
self.messages[-1] = {"role": "user", "content": user_input} |
|
|
|
print_red(self.async_client.last_response.headers.get("X-Chosen-Backend", "No backend")) |
|
# Update chosen_backend |
|
if model not in [self.get_model("vision"), self.get_model("tools"), self.get_model("reasoning")]: |
|
self.chosen_backend = self.async_client.last_response.headers.get( |
|
"X-Chosen-Backend" |
|
) |
|
|
|
# Handle streaming response |
|
if stream: |
|
return self.read_stream(response) |
|
else: |
|
# Process the response |
|
if isinstance(response, ChatResponse): |
|
result = response.message.content.strip('"') |
|
self.messages.append( |
|
{"role": "assistant", "content": result.strip('"')} |
|
) |
|
if tools and not response.message.get("tool_calls"): |
|
print_yellow("No tool calls in response".upper()) |
|
if not self.chat: |
|
self.messages = [self.messages[0]] |
|
return result |
|
else: |
|
print_red("Unexpected response type") |
|
return "An error occurred." |
|
|
|
def prepare_images(self, images, message): |
|
""" |
|
Prepares a list of images by converting them to base64 encoded strings and adds them to the provided message dictionary. |
|
Args: |
|
images (list): A list of images, where each image can be a file path (str), a base64 encoded string (str), or bytes. |
|
message (dict): A dictionary to which the base64 encoded images will be added under the key "images". |
|
Returns: |
|
dict: The updated message dictionary with the base64 encoded images added under the key "images". |
|
Raises: |
|
ValueError: If an image is not a string or bytes. |
|
""" |
|
import base64 |
|
|
|
base64_images = [] |
|
base64_pattern = re.compile(r"^[A-Za-z0-9+/]+={0,2}$") |
|
|
|
for image in images: |
|
if isinstance(image, str): |
|
if base64_pattern.match(image): |
|
base64_images.append(image) |
|
else: |
|
with open(image, "rb") as image_file: |
|
base64_images.append( |
|
base64.b64encode(image_file.read()).decode("utf-8") |
|
) |
|
elif isinstance(image, bytes): |
|
base64_images.append(base64.b64encode(image).decode("utf-8")) |
|
else: |
|
print_red("Invalid image type") |
|
|
|
message["images"] = base64_images |
|
# Use the vision model |
|
|
|
return message |
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
llm = LLM() |
|
|
|
result = llm.generate( |
|
query="I want to add 2 and 2", |
|
) |
|
print(result.content)
|
|
|