first commit

main
Lasse Studion 2 years ago
commit ef5a16870a
  1. 49
      _arango.py
  2. 264
      _llm.py
  3. 176
      extract_data.py
  4. 148
      extract_fup.py
  5. 24
      extract_reason.py
  6. 119
      extract_relations.py
  7. 110
      extract_roles.py
  8. 23
      fix_persons.py
  9. 11
      persons.py
  10. 67
      summarise_interrogations.py
  11. 8
      test.py

@ -0,0 +1,49 @@
import os
import re
#import pandas as pd
from arango import ArangoClient, exceptions
from arango.database import StandardDatabase
from dotenv import load_dotenv
class ArangoDB:
def __init__(self, database=None):
"""
Initializes a connection to an ArangoDB database using the configuration
"""
load_dotenv(".env")
host = os.environ['ARANGO_HOSTS']
if database:
db = database
else:
db = os.environ['ARANGO_DB']
username = os.environ['ARANGO_USERNAME']
pwd = os.environ['ARANGO_PWD_LASSE']
# Initialize the database for ArangoDB.
self.client: ArangoClient = ArangoClient(hosts=host)
self.db: StandardDatabase = self.client.db(db, username=username, password=pwd)
def fix_key_name(self, string):
"""
Makes a string a valid ArangoDB key name.
Args:
string (str): The string to fix.
Returns:
str: The fixed string.
"""
string = string.replace("å", "a").replace('ä', 'a').replace('ö', 'o').replace('Å', 'A').replace('Ä', 'A').replace('Ö', 'O')
string = re.sub(r"[^a-zA-Z0-9_\_\-\.\@\(\)\+,=\;\$\!\*\'\%]", "_", string)
encoded_string = string.encode('utf-8')
if len(encoded_string) > 254:
string = encoded_string[:254].decode('utf-8', 'ignore')
return string
arango = ArangoDB()
if __name__ == '__main__':
arango = ArangoDB()
print(arango.db)

@ -0,0 +1,264 @@
from time import sleep
import requests
import concurrent.futures
import queue
import threading
from _arango import arango
class LLM:
def __init__(
self,
chat=False,
model="llama3:8b-instruct-q5_K_M",
keep_alive=3600 * 24,
start=False,
):
"""
Initializes an instance of MyClass.
Args:
chat (bool, optional): Specifies whether the instance is for chat purposes. Defaults to False.
model (str, optional): The model to be used. Defaults to "llama3:8b-instruct-q5_K_M".
keep_alive (int, optional): The duration in seconds to keep the instance alive. Defaults to 3600*24.
start (bool, optional): If True, the instance will automatically start processing requests upon initialization.
This means that a separate thread will be started that runs the generate_concurrent method,
which processes requests concurrently. Defaults to False.
"""
self.server = "192.168.1.12"
self.port = 3300 # 11440 All 4 GPU # 4500 "SW"
self.model = model
self.temperature = 0
self.system_message = 'Svara alltid på svenska. Svara bara på det som efterfrågas. Om du inte kan svara, skriv "Jag vet inte".'
self.messages = [{"role": "system", "content": self.system_message}]
self.chat = chat
self.max_tokens = 24000
self.keep_alive = keep_alive
self.request_queue = queue.Queue()
self.result_queue = queue.Queue()
self.all_requests_added_event = threading.Event()
self.all_results_processed_event = threading.Event()
self.stop_event = threading.Event()
if start:
self.start()
def generate(self, message):
# Prepare the request data
options = {
"temperature": self.temperature,
}
if self.chat:
self.build_message(message)
messages = self.messages
else:
self.messages.append({"role": "user", "content": message})
messages = self.messages
data = {
"model": self.model,
"messages": messages,
"options": options,
"keep_alive": self.keep_alive,
"stream": False,
}
# Make a POST request to the API endpoint
result = requests.post(
f"http://{self.server}:{self.port}/api/chat", json=data
).json()
if "message" in result:
answer = result["message"]["content"]
else:
from pprint import pprint
pprint(result)
raise Exception("Error occurred during API request")
if self.chat:
self.messages.append({"role": "assistant", "content": answer})
return answer
def generate_concurrent(
self,
request_queue,
result_queue,
all_requests_added_event,
all_results_processed_event,
):
self.chat = False
with concurrent.futures.ThreadPoolExecutor() as executor:
future_to_message = {}
buffer_size = 6 # The number of tasks to keep in the executor
while True:
if self.stop_event.is_set():
break
try:
# If there are less than buffer_size tasks being processed, add new tasks
while len(future_to_message) < buffer_size:
# Take a request from the queue
doc_id, message = request_queue.get(timeout=1)
# Submit the generate method to the executor for execution
future = executor.submit(self.generate, message)
future_to_message[future] = doc_id
except queue.Empty:
# If the queue is empty and all requests have been added, break the loop
if all_requests_added_event.is_set():
break
else:
continue
# Process completed futures
done_futures = [f for f in future_to_message if f.done()]
for future in done_futures:
doc_id = future_to_message.pop(future)
try:
summary = future.result()
except Exception as exc:
print("Document %r generated an exception: %s" % (doc_id, exc))
else:
# Put the document ID and the summary into the result queue
result_queue.put((doc_id, summary))
all_results_processed_event.set()
def start(self):
# Start a separate thread that runs the generate_concurrent method
threading.Thread(
target=self.generate_concurrent,
args=(
self.request_queue,
self.result_queue,
self.all_requests_added_event,
self.all_results_processed_event,
),
).start()
def stop(self):
"""
Stops the instance from processing further requests.
"""
self.stop_event.set()
def add_request(self, id, prompt):
# Add a request to the request queue
self.request_queue.put((id, prompt))
def finish_adding_requests(self):
# Signal that all requests have been added
print("\033[92mAll requests added\033[0m")
self.all_requests_added_event.set()
def get_results(self):
# Process the results
while True:
try:
# Take a result from the result queue
doc_id, summary = self.result_queue.get(timeout=1)
return doc_id, summary
except queue.Empty:
# If the result queue is empty and all results have been processed, break the loop
if self.all_results_processed_event.is_set():
break
else:
sleep(0.2)
continue
def build_message(self, message):
# Add the new message to the list
self.messages.append({"role": "user", "content": message})
# Calculate the total token length of the messages
total_tokens = sum([len((msg["content"])) for msg in self.messages])
# While the total token length exceeds the limit, remove the oldest messages
while total_tokens > self.max_tokens:
removed_message = self.messages.pop(
1
) # Remove the oldest message (not the system message)
total_tokens -= len((removed_message["content"]))
def unload_model(self):
data = {
"model": self.model,
"messages": self.messages,
"keep_alive": 0,
"stream": False,
}
# Make a POST request to the API endpoint
requests.post(f"http://{self.server}:{self.port}/api/chat", json=data).json()[
"message"
]["content"]
if __name__ == "__main__":
# Initialize the LLM object
llm = LLM(chat=False, model="llama3:8b-instruct-q5_K_M")
# Create a queue for requests and a queue for results
request_queue = queue.Queue()
result_queue = queue.Queue()
# Create an event to signal when all requests have been added
all_requests_added_event = threading.Event()
all_results_processed_event = threading.Event()
# Start a separate thread that runs the generate_concurrent method
threading.Thread(
target=llm.generate_concurrent,
args=(
request_queue,
result_queue,
all_requests_added_event,
all_results_processed_event,
),
).start()
# Add requests to the request queue
from _arango import arango
interrogations = arango.db.collection("interrogations").all()
for doc in interrogations:
text = doc["text"]
prompt = f'Kolla på texten nedan: \n\n """{text}""" \n\n Sammanfatta förhöret med fokus på vad som sades, inte var det hölls eller annat formalia. Svara så kort som möjligt men var noga med detaljer som händelser som beskrivs, namn, datum och platser.\nKort sammanfattning:'
request_queue.put((doc["_key"], prompt))
# Signal that all requests have been added
all_requests_added_event.set()
# Process the results
while True:
try:
# Take a result from the result queue
doc_id, summary = result_queue.get(timeout=1)
print("\033[92m" + doc_id + "\033[0m", summary)
# Update the document with the summary
arango.db.collection("interrogations").update_match(
{"_key": doc_id}, {"summary": summary}
)
except queue.Empty:
# If the result queue is empty and all results have been processed, break the loop
if all_results_processed_event.is_set():
break
else:
continue
# import argparse
# parser = argparse.ArgumentParser()
# parser.add_argument("--unload", action="store_true", help="Unload the model")
# args = parser.parse_args()
# #llm = LLM(model='llama3:70b-text-q4_K_M', keep_alive=6000, chat=True)
# llm = LLM(keep_alive=60, chat=True)
# if args.unload:
# llm.unload_model()
# else:
# while True:
# message = input(">>> ")
# print(llm.generate(message))

@ -0,0 +1,176 @@
from _llm import LLM
import fitz
from _arango import arango
from openai import OpenAI
from pprint import pprint
def extract_interrogation(text):
interrogated = llm.generate(
f'Kolla på texten nedan: \n\n """{text}""" \n\n Vem är förhörd? Svara på formen "Förnamn Efternamn" \n\nFörhörd person:'
)
interrogated_role = llm.generate(
f'Kolla på texten nedan: \n\n """{text}""" \n\n Vem är {interrogated}? \n\nTitel på förhörd person:'
)
interrogation_topic = llm.generate(
f'Kolla på texten nedan: \n\n """{text}""" \n\n Vad handlade förhöret om? Svara så kortfattat som möjligt. \n\nFörhörets syfte:'
)
interrogation_date = llm.generate(
f'Kolla på texten nedan: \n\n """{text}""" \n\n När ägde förhöret rum? Svara på formen YYY-MM-DD \n\nFörhörsdatum:'
)
print(f"Förhörd: {interrogated}")
print(f"Förhörd roll: {interrogated_role}")
print(f"Förhörets syfte: {interrogation_topic}")
print(f"Förhörsdatum: {interrogation_date}")
if not arango.db.has_document(
"interrogations/"
+ arango.fix_key_name(f"{interrogated}_{interrogation_date}_p.{page.number}")
):
interrogation_key = arango.fix_key_name(
f"{interrogated}_{interrogation_date}_p.{page.number}"
)
arango.db.collection("interrogations").insert(
{
"_key": interrogation_key,
"interrogated": interrogated,
"role": interrogated_role,
"topic": interrogation_topic,
"date": interrogation_date,
"page": page.number,
"text": text,
"filename": filename,
}
)
else:
interrogation_key = arango.fix_key_name(
f"{interrogated}_{interrogation_date}_p.{page.number}"
)
return (
interrogation_key,
interrogated,
interrogated_role,
interrogation_topic,
interrogation_date,
)
def extract_relations(text, interrogated_person):
prompt = f'''Nedan är en del av ett förhör med {interrogated_person}. Jag vill veta vilka relationer som på något vis nämns i texten. Dessa kan vara mellan {interrogated_person} och någon annan, mellan två personer som {interrogated_person} berättar om eller mellan en person och en organisation/plats.
Svara formen "person1;person2;relation\n". Om det inte finns någon relation, svara med None.
Nedan är ett exempel för att du ska förstå hur du ska svara:
<EXEMPEL>
Text: """En solig dag promenerade Anna längs med stadens livliga gator. Plötsligt stannade hon upp när hon såg en bekant gestalt längre fram. Med ett leende gick hon fram och hälsade på personen, och de inledde en trevlig konversation. Ju mer de pratade, desto fler minnen från barndomen väcktes till liv. Till slut insåg de att de faktiskt var gamla klasskompisar från högstadiet. Skratten ekade när de mindes tokiga stunder och gemensamma vänner. Det var en oväntad men glädjande återförening mitt i vardagens trummer."""
Relationer: Anna;Peter;klasskompisar från högstadiet\n
</EXEMPEL>
Text: """{text}"""\n
Svara ENBART med relationerna, inga förklaringar eller exempel eller något annat. Kom ihåg att svara formen "person1;person2;relation\n".
Relationer:'''
return llm.generate(prompt)
# * OpenAI
OPENAI_KEY = "sk-proj-lDgKqh9eTLpbuSEaR69XT3BlbkFJsw0QkuXuZmf08mt9X76h"
client = OpenAI(
# This is the default and can be omitted
api_key=OPENAI_KEY,
)
# * Llama
llm = LLM(chat=False, model="llama3:8b-instruct-q5_K_M")
# To check if the interrogation has been found
interrogation = False
# Open the PDF file
filename = "Förhörsprotokoll.pdf"
doc = fitz.open(f"pdfs/{filename}")
for page in doc:
text = page.get_text()
control_words = [
"Förhörsdatum",
"Förhör påbörjat",
"Förhör avslutat",
"Förhörssätt",
"Typ av förhör",
"Förhörsvittne",
]
n_control_words = 0
for word in control_words:
if word in text:
n_control_words += 1
if n_control_words >= 2:
print("\n\n")
interrogation = True
(
interrogation_key,
interrogated,
interrogated_role,
interrogation_topic,
interrogation_date,
) = extract_interrogation(text)
if not interrogation:
continue
# Extract relations from the page
relations = extract_relations(text, interrogated_person=interrogated)
for i in relations.split("\n"):
if i == "None":
continue
relation_parts = i.split(";")
person1 = relation_parts[0]
person2 = relation_parts[1]
relation = " - ".join(relation_parts[2:])
prompt = f'Kolla på texten nedan: \n\n """{text}""" \n\n Vilken del av texten beskriver relationen "{relation}" mellan {person1} och {person2}? Svara med den ORDAGRANNA texten. \n\nDel av text:'
relation_text = llm.generate(prompt)
arango_document = {
"_key": arango.fix_key_name(
f"{person1}_{person2}_{relation}_p.{page.number}"
),
"person1": person1,
"person2": person2,
"relation": relation,
"page": page.number,
"text": relation_text,
"filename": filename,
"iterrogation": interrogation_key,
"interrogated_person": interrogated,
"interrogation_date": interrogation_date,
}
pprint(arango_document)
arango.db.collection("relations").insert(
arango_document, silent=True, overwrite=True
)
print("\n")
# result = client.chat.completions.create(
# messages=[
# {
# "role": "user",
# "content": prompt,
# }
# ],
# model="gpt-4",
# )
# print(result)
# answer = result.choices[0].message.content
# print(answer)
# print('\n\n')
# print(f"\033[92m{answer}\033[0m")
# exit()

@ -0,0 +1,148 @@
from _llm import LLM
import fitz
from _arango import arango
from openai import OpenAI
from pprint import pprint
class Section:
def __init__(self, type, page, filename="Förhörsprotokoll.pdf"):
self.type = type
self.filename = filename
self.text = ""
self.person = ""
self.role = ""
self.topic = ""
self.date = ""
self.start_page = page
self.key = ""
def add_to_arango(self):
key = arango.fix_key_name(
f"{self.person}_{self.date}_p.{self.start_page}"
)
arango_doc = {
"_key": key,
"person": self.person,
"role": self.role,
"topic": self.topic,
"date": self.date,
"page": self.start_page,
"text": self.text,
"filename": self.filename,
}
arango.db.collection(self.type).insert(arango_doc, overwrite=True)
print(f"Added {self.type} to ArangoDB with key {key}")
def extract_interrogation(self, text):
self.person = llm.generate(
f'Kolla på texten nedan: \n\n """{text}""" \n\n Vem är förhörd? Svara på formen "Förnamn Efternamn" \n\nFörhörd person:'
)
self.role = llm.generate(
f'Kolla på texten nedan: \n\n """{text}""" \n\n Vem är {self.person}? \n\nTitel på förhörd person:'
)
self.topic = llm.generate(
f'Kolla på texten nedan: \n\n """{text}""" \n\n Vad handlade förhöret om? Svara så kortfattat som möjligt. \n\nFörhörets syfte:'
)
self.date = llm.generate(
f'Kolla på texten nedan: \n\n """{text}""" \n\n När ägde förhöret rum? Svara på formen YYY-MM-DD \n\nFörhörsdatum:'
)
self.key = arango.fix_key_name(f"{self.person}_{self.date}_p.{self.start_page}")
def extract_pm(self, text):
self.person = llm.generate(
f'Kolla på texten nedan: \n\n """{text}""" \n\n Vem är uppgiftslämnare? Svara på formen "Förnamn Efternamn" \n\nPM:'
)
self.role = llm.generate(
f'Kolla på texten nedan: \n\n """{text}""" \n\n Vem är {self.person}? Svara "None" om det inte framgår. \n\nTitel på person:'
)
self.topic = llm.generate(
f'Kolla på texten nedan: \n\n """{text}""" \n\n Vad handlade informationen om? Svara så kortfattat som möjligt. Svara "None" om det inte framgår. \n\Svar:'
)
self.date = llm.generate(
f'Kolla på texten nedan: \n\n """{text}""" \n\n När lämnades informationen? Svara på formen YYY-MM-DD \n\nDatum:'
)
self.key = arango.fix_key_name(f"{self.person}_{self.date}_p.{self.start_page}")
def new_interrogation(page, section):
if section.text != "":
section.add_to_arango()
section = Section("interrogations", page.number)
section.extract_interrogation(page.get_text())
return section
def new_pm(page, section):
if section.text != "":
section.add_to_arango()
section = Section("pms", page.number)
section.extract_interrogation(page.get_text())
return section
# * Llama
llm = LLM(chat=False, model="llama3:8b-instruct-q5_K_M")
# Open the PDF file
filename = "Förhörsprotokoll.pdf"
area = fitz.Rect(0, 40, 520, 800) # To exlude the header
doc = fitz.open(f"pdfs/{filename}")
section = Section("interrogations", 0)
for page in doc.pages(9, len(doc) - 1):
# Get the text from the page
page_text = page.get_text("text")
# Check if there is a new interrogation
control_words_interrogation = [
"Förhörsdatum",
"Förhör påbörjat",
"Förhör avslutat",
"Förhörssätt",
"Typ av förhör",
"Förhörsvittne",
]
n_control_words_interrogation = 0
for word in control_words_interrogation:
if word in page_text:
n_control_words_interrogation += 1
if n_control_words_interrogation >= 2:
section = new_interrogation(page, section)
area = fitz.Rect(0, 400, 520, 800)
else:
# Check if there is a new PM
control_words_pm = [
"PM",
"Uppgiften avser",
"Upprättad av",
"Sätt på vilket uppgift lämnats",
"Uppgiftslämnare",
]
n_control_words_pm = 0
for word in control_words_pm:
if word in page_text:
n_control_words_pm += 1
if n_control_words_pm >= 2:
area = fitz.Rect(0, 400, 520, 800)
section = new_pm(page, section)
else:
# It's a "normal" page
area = fitz.Rect(0, 40, 520, 800) # To exlude the header
blocks = page.get_text("blocks", clip=area)
for block in blocks:
section.text += block[4] + "\n\n"

@ -0,0 +1,24 @@
import fitz
from pprint import pprint
from _arango import arango
from _llm import LLM
llm = LLM(chat=False)
docs = [i for i in arango.db.collection('interrogations').all()]
sorted_docs = sorted(docs, key=lambda x: x['date'])
filename = "Förhörsprotokoll.pdf"
pdf = fitz.open(f"pdfs/{filename}")
for doc in sorted_docs:
pdf_page = pdf[doc['page']]
text = pdf_page.get_text()
print(doc['person'])
prompt = f'Kolla på texten nedan: \n\n """{text}""" \n\n Den förhörda personen heter {doc["person"]} Varför förhörs {doc["person"]}? Om det har något att göra med {doc["person"]}s titel eller yrke, svara med det, annars med eventuell annan anledning. Om det inte finns någon speciell anledning eller titel, svara "None". \n\:'
answer = llm.generate(prompt)
doc['reason'] = answer
print("\033[92m" + answer + "\033[0m")
print()
arango.db.collection('interrogations').update(doc)

@ -0,0 +1,119 @@
from _arango import arango
from _llm import LLM
from pprint import pprint
from langchain_text_splitters import CharacterTextSplitter
# Create an instance of the SentenceSplitter
text_splitter = CharacterTextSplitter(
separator="\n\n",
chunk_size=8000,
chunk_overlap=0,
length_function=len,
is_separator_regex=False,
)
llm = LLM(chat=False)
interrogations = [i for i in arango.db.collection("interrogations").all()]
interrogations = sorted(interrogations, key=lambda x: x["date"])
for interrogation in interrogations:
# Get the persons (now updated from the last one, so it should be all persons in the database)
persons_docs = [i for i in arango.db.collection("persons").all()]
persons = [i["name"] for i in persons_docs]
persons_dict = {i["name"]: i for i in persons_docs}
persons_string = "\n".join(persons)
interrogated_person = interrogation["person"]
if interrogation["person"] in persons:
doc = persons_dict[interrogated_person]
_from = doc["_id"]
text = interrogation["text"]
chunks = text_splitter.split_text(text)
for chunk in chunks:
prompt = f''''
Kolla texten nedan: \n\
TEXT:
"""{chunk}""" \n
{interrogation["person"]} förhörs. Nämns några personer i listan nedan i själva förhöret? \n
LISTA PERSONER:
{persons_string}\n
I texten kan en person nämnas med sitt fulla namn, men oftast bara förnamn eller efternamn.
Svara med fullständiga namn från listan och hur personen nämns i texten formen "namn;hur personen nämns\n".
Nedan är ett exempel för att du ska förstå hur du ska svara:
<EXEMPEL>
John Lundqvist;John
Karl Renström; Karl
</EXEMPEL>
Svara ENBART med personens namn och hur det nämns, formen "namn;hur personen nämns\n". Svara inte med något resonemang, och enbart med personer som nämns. Om ingen person från listan nämns, svara med None.
\nPersoner:'''
relations = llm.generate(prompt)
for relation in relations.replace('*', '').split("\n"):
if relation == "None":
continue
try:
name, mention = relation.split(";", 1)
except ValueError:
print("\033[91m" + relation + "\033[0m")
continue
if name in persons:
doc = persons_dict[name]
_to = doc["_id"]
else:
name_parts = name.split(" ")
if ' ' in name and f'{name_parts[1]} {name_parts[0]}' in persons:
doc = persons_dict[f'{name_parts[1]} {name_parts[0]}']
_to = doc["_id"]
else:
arango_doc = {
"name": name,
"_key": arango.fix_key_name(name),
"interrogated": "Unknown",
}
# pprint(mention_context)
# add = input(f"Add {name} ({mention}) to database? (y/n) >> ")
# if add in ["y", ""]:
if arango.fix_key_name(name) not in arango.db.collection("persons"):
arango.db.collection("persons").insert(arango_doc)
doc = arango.db.collection("persons").get(arango_doc["_key"])
_to = doc["_id"]
else:
doc = arango.db.collection("persons").get(arango_doc["_key"])
_to = doc["_id"]
if _from == _to:
continue
relation_key = arango.fix_key_name(f"{_from}_{_to}__{interrogation['_key']}").replace("persons_", "")
if arango.db.has_document("all_relations/" + relation_key):
continue
# Ask LLM about the context of the mention
prompt = f'Nedan är en del av ett förhör med {interrogated_person}.\n\n"""{chunk}"""\n\n{interrogated_person} nämner i förhöret en person vid namn {name}. Exakt vad säger {interrogated_person} om {name}? Svara så kortfattat som möjligt.\n\nSvar:'
mention_context = llm.generate(prompt)
arango_doc = {
"_key": relation_key,
"_from": _from,
"_to": _to,
"in": interrogation["_id"],
"context": "interrogation",
"mentioned_as": mention,
"mention": mention_context,
}
print("\033[92m" + f'{_from} -> {_to}' + "\033[0m")
print(mention_context)
print()
arango.db.collection("all_relations").insert(
arango_doc,
overwrite=True,
)

@ -0,0 +1,110 @@
import difflib
from _arango import arango
# filename = "Huvudprotokoll.pdf"
# doc = fitz.open(f"pdfs/{filename}")
# def group_words_by_y(words, tolerance=2):
# # Sort the words by their y-coordinate
# words.sort(key=lambda word: word[1])
# # Group the words by their rounded y-coordinate
# grouped_words = itertools.groupby(words, key=lambda word: round(word[1] / tolerance))
# # Sort the words in each group by their x-coordinate and combine the text
# combined_words = [' '.join(word[4] for word in sorted(group, key=lambda word: word[0])) for _, group in grouped_words]
# return combined_words
# append = False
# for page in doc.pages(1,3):
# words = []
# text_words = page.get_text('words', sort=True)
# for word in text_words:
# if append:
# words.append(word)
# if word[4] == "Brottsplatsadress":
# append = True
# combined_words = group_words_by_y(words, tolerance=5)
# for word in combined_words:
# last_space_index = word.rfind(' ')
# if last_space_index != -1:
# first_part = word[:last_space_index]
# if ',' in first_part:
# word_parts = first_part.split(',')
# first_part = word_parts[1].strip() + ' ' + word_parts[0].strip()
# second_part = word[last_space_index+1:]
# else:
# first_part = word
# second_part = ''
# print(first_part.strip(), ';', second_part.strip())
# Take the output and clean it up in Excel
data = [
{"name": "Carl-William Ahlqvist", "role": "Misstänkt"},
{"name": "Elias David Ahlqvist", "role": "Vittne"},
{"name": "Marlene Linnea Ahlqvist", "role": "Misstänkt"},
{"name": "Jhonny Kaj lngemund Backman", "role": "Vittne"},
{"name": "Louise Solveig Karin Bengtsson", "role": "Vittne"},
{"name": "Ove Robert Greger Bengtsson", "role": "Misstänkt"},
{"name": "Björn Willy Johnny Borell", "role": "Vittne"},
{"name": "Lars Victor Bystedt", "role": "Vittne"},
{"name": "Svea Helena Caroline Enberg", "role": "Vittne"},
{"name": "Agnes Marie Hällgren", "role": "Vittne"},
{"name": "Anna Jessica Maria Höglund", "role": "Vittne"},
{"name": "Kent Åke Höglund", "role": "Vittne"},
{"name": "Dan Anton Tobias Johansson", "role": "Vittne"},
{"name": "Fredrik Max Johansson", "role": "Vittne"},
{"name": "Ivar Emanuel Johansson", "role": "Målsägande"},
{"name": "Rut Marit Beatrice Johansson", "role": "Målsägande"},
{"name": "Lars Anders Markus Karlsson", "role": "Vittne"},
{"name": "Eija Inkeri Kjäll", "role": "Vittne"},
{"name": "Neo Arvid Magnus Larsson", "role": "Vittne"},
{"name": "Lena Marie Susann Lind", "role": "Vittne"},
{"name": "Elin Linnea Maria Lindell", "role": "Vittne"},
{"name": "Sofi Teresia Lindwall", "role": "Vittne"},
{"name": "Lars Thorbjöm Lundgren", "role": "Vittne"},
{"name": "Fredrik Lars Lundmark", "role": "Vittne"},
{"name": "Lars-Erik Mikael Molin", "role": "Vittne"},
{"name": "Per Lars-Erik Molin", "role": "Vittne"},
{"name": "Robin Alex Nieminen", "role": "Misstänkt"},
{"name": "Malin Charlotta Nyström", "role": "Vittne"},
{"name": "Ola Folke Magnus Pålsson", "role": "Vittne"},
{"name": "Anna Margareta Renlund", "role": "Vittne"},
{"name": "Karl Emanuel Renström", "role": "Vittne"},
{"name": "Karl Henrik Sjölund", "role": "Vittne"},
{"name": "Sven Bertil Stenberg", "role": "Vittne"},
{"name": "BemdtPatrik Svahn", "role": "Vittne"},
{"name": "Nea Christina Vänstedt", "role": "Vittne"},
{"name": "Ola Nils Vänstedt", "role": "Vittne"},
{"name": "Ulf Peder Öhman", "role": "Vittne"}
]
persons = {i['name']: i['role'] for i in data}
list_of_names = [i['name'] for i in data]
interrogations = arango.db.collection('interrogations').all()
for doc in interrogations:
most_similar_name = None
most_similar_names = difflib.get_close_matches(doc['person'], list_of_names, n=2)
for name in most_similar_names:
doc_names = set(doc['person'].split())
name_parts = set(name.split())
if doc_names.issubset(name_parts):
most_similar_name = name
break
if not most_similar_name:
doc['role'] = None
print("\033[91m" + doc['person'] + "\033[0m")
else:
doc['role'] = persons[most_similar_name]
print("\033[92m" + doc['person'] + "\033[0m")
doc['full_name'] = most_similar_name
arango.db.collection('interrogations').update(doc, keep_none=False)

@ -0,0 +1,23 @@
from _arango import arango
from _llm import LLM
interrogations = [i for i in arango.db.collection("interrogations").all()]
for person in interrogations:
if "full_name" not in person:
person["full_name"] = None
if 'role' not in person:
person['role'] = None
arango_doc = {
"_key": arango.fix_key_name(person["person"]),
"name": person["person"],
"role": person["role"],
"reason_for_interrogation": [person["topic"]],
"full_name": person["full_name"],
"interrogation_date": [person["date"]],
"interrogations": [person["_key"]],
}
arango.db.collection("persons").insert(
arango_doc, overwrite_mode="update", merge=True, keep_none=False
)

@ -0,0 +1,11 @@
from _arango import arango
from _llm import LLM
llm = LLM(keep_alive=6000, chat=False)
q = 'for doc in interrogations filter doc.reason != null return doc'
docs = [i for i in arango.db.aql.execute(q)]
for doc in docs:
print("\033[92m", doc['person'], "\033[0m", doc['reason'])

@ -0,0 +1,67 @@
import queue
import threading
from _arango import arango
from _llm import LLM
# Initialize and start the LLM object
llm = LLM(start=True)
# Add requests to the LLM object
q = 'for doc in interrogations filter doc.summary == null return doc'
docs = [i for i in arango.db.aql.execute(q)]
print(len(docs))
llm.stop()
exit()
for doc in docs:
text = doc['text']
prompt = f'Kolla på texten nedan: \n\n """{text}""" \n\n Sammanfatta förhöret med fokus på vad som sades, inte var det hölls eller annat formalia. Svara så kort som möjligt men var noga med detaljer som händelser som beskrivs, namn, datum och platser.\nKort sammanfattning:'
llm.add_request(doc['_key'], prompt)
# Signal that all requests have been added
llm.finish_adding_requests()
# Get the results
llm.get_results()
# Initialize the LLM object
llm = LLM(chat=False, model="llama3:8b-instruct-q5_K_M")
# Create a queue for requests and a queue for results
request_queue = queue.Queue()
result_queue = queue.Queue()
# Create an event to signal when all requests have been added
all_requests_added_event = threading.Event()
all_results_processed_event = threading.Event()
# Start a separate thread that runs the generate_concurrent method
threading.Thread(target=llm.generate_concurrent, args=(request_queue, result_queue, all_requests_added_event, all_results_processed_event)).start()
# Add requests to the request queue
interrogations = arango.db.collection('interrogations').all()
for doc in interrogations:
text = doc['text']
prompt = f'Kolla på texten nedan: \n\n """{text}""" \n\n Sammanfatta förhöret med fokus på vad som sades, inte var det hölls eller annat formalia. Svara så kort som möjligt men var noga med detaljer som händelser som beskrivs, namn, datum och platser.\nKort sammanfattning:'
request_queue.put((doc['_key'], prompt))
# Signal that all requests have been added
all_requests_added_event.set()
# Process the results
while True:
try:
# Take a result from the result queue
doc_id, summary = result_queue.get(timeout=1)
print("\033[92m" + doc_id + "\033[0m", summary)
# Update the document with the summary
arango.db.collection('interrogations').update_match({'_key': doc_id}, {'summary': summary})
except queue.Empty:
# If the result queue is empty and all results have been processed, break the loop
if all_results_processed_event.is_set():
break
else:
continue

@ -0,0 +1,8 @@
from _arango import arango
q = 'for doc in persons filter doc.interrogated == "Unknown" return doc'
for person in arango.db.aql.execute(q):
arango.db.collection("persons").delete(person)
arango.db.collection("all_relations").truncate()
Loading…
Cancel
Save