import os import pickle import time import cv2 import face_recognition def build_data(): """ Build the face_enc file with data to recognize from """ knownEncodings = [] knownNames = [] members = os.listdir('../profile_pictures') #get paths of each file in folder named Images #Images here contains my data(folders of various persons) for member in members: if '.DS_Store' in member: continue imagePaths = [] for path in os.listdir(f'../profile_pictures/{member}'): if '.jpg' in path: imagePaths.append(f'../profile_pictures/{member}/{path}') # loop over the image paths for imagePath in imagePaths: print(imagePath) # load the input image and convert it from BGR (OpenCV ordering) # to dlib ordering (RGB) image = cv2.imread(imagePath) rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) #Use Face_recognition to locate faces boxes = face_recognition.face_locations(rgb, number_of_times_to_upsample = 2) #,model='hog' # compute the facial embedding for the face encodings = face_recognition.face_encodings(image, boxes) # loop over the encodings for encoding in encodings: knownEncodings.append(encoding) knownNames.append(member) #save emcodings along with their names in dictionary data data = {"encodings": knownEncodings, "names": knownNames} #use pickle to save data into a file for later use with open("face_enc", "wb") as f: f.write(pickle.dumps(data)) f.close() def identify_face(imagePath): #find path of xml file containing haarcascade file cascPathface = os.path.dirname( cv2.__file__) + "/data/haarcascade_frontalface_alt2.xml" # load the harcaascade in the cascade classifier faceCascade = cv2.CascadeClassifier(cascPathface) # load the known faces and embeddings saved in last file data = pickle.loads(open('face_enc', "rb").read()) #Find path to the image you want to detect face and pass it here image = cv2.imread(imagePath) rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) #convert image to Greyscale for haarcascade gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) faces = faceCascade.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=5, minSize=(60, 60), flags=cv2.CASCADE_SCALE_IMAGE) # the facial embeddings for face in input encodings = face_recognition.face_encodings(rgb) names = [] # loop over the facial embeddings incase # we have multiple embeddings for multiple fcaes for encoding in encodings: #Compare encodings with encodings in data["encodings"] #Matches contain array with boolean values and True for the embeddings it matches closely #and False for rest matches = face_recognition.compare_faces(data["encodings"], encoding) #set name =unknown if no encoding matches name = "Unknown" # check to see if we have found a match if True in matches: #Find positions at which we get True and store them matchedIdxs = [i for (i, b) in enumerate(matches) if b] counts = {} # loop over the matched indexes and maintain a count for # each recognized face face for i in matchedIdxs: #Check the names at respective indexes we stored in matchedIdxs name = data["names"][i] #increase count for the name we got counts[name] = counts.get(name, 0) + 1 #set name which has highest count name = max(counts, key=counts.get) print(counts) # update the list of names names.append(name) # loop over the recognized faces for ((x, y, w, h), name) in zip(faces, names): # rescale the face coordinates # draw the predicted face name on the image cv2.rectangle(image, (x, y), (x + w, y + h), (0, 255, 0), 2) cv2.putText(image, name, (x, y), cv2.FONT_HERSHEY_SIMPLEX, 0.75, (0, 255, 0), 2) cv2.imshow("Frame", image) cv2.waitKey(0) identify_face('/Users/Lasse/Datorgemensamt/Programmeringsprojekt/Facebook/fb-scraper/profile_pictures/millington.jiang/4138068259557849.jpg')