You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

185 lines
5.6 KiB

import os
import re
import crossref_commons.retrieval as crossref
import pymupdf
import pymupdf4llm
from semantic_text_splitter import MarkdownSplitter
from _arango import ArangoDB
from _chromadb import ChromaDB
arango = ArangoDB()
chromadb = ChromaDB()
# Initialize the chroma database
chroma_col = chromadb.db.get_collection("sci_articles")
max_characters = 2200
ts = MarkdownSplitter(max_characters)
path_folder = "sci_articles"
def get_crossref(doi):
try:
work = crossref.get_publication_as_json(doi)
# Determine the best publication date
if "published-print" in work:
publication_date = work["published-print"]["date-parts"][0]
elif "published-online" in work:
publication_date = work["published-online"]["date-parts"][0]
elif "issued" in work:
publication_date = work["issued"]["date-parts"][0]
else:
publication_date = [None]
publication_year = publication_date[0]
metadata = {
"doi": work.get("DOI", None),
"title": work.get("title", [None])[
0
], # Extract the first title if available
"authors": [
f"{author['given']} {author['family']}"
for author in work.get("author", [])
],
"abstract": work.get("abstract", None),
"journal": work.get("container-title", [None])[
0
], # Extract the first journal title if available
"volume": work.get("volume", None),
"issue": work.get("issue", None),
"pages": work.get("page", None),
"published_date": "-".join(
map(str, publication_date)
), # Join date parts with hyphens
"published_year": publication_year,
"url_doi": work.get("URL", None),
"link": (
work.get("link", [None])[0]["URL"] if work.get("link", None) else None
),
"language": work.get("language", None),
}
return metadata
except Exception as e:
print(f"Error retrieving metadata for DOI {doi}: {e}")
return None
def extract_doi(text):
# Define the regex pattern for DOI
doi_pattern = r"10\.\d{4,9}/[-._;()/:A-Za-z0-9]+"
# Find the first doi in the text, if there is any
doi = re.search(doi_pattern, text)
if doi:
# Return the first doi found
doi = doi.group()
doi = doi.strip('.').replace('.pdf', '')
return doi
else:
return None
def process_pdf(pdf):
if '/' not in pdf:
pdf_path = os.path.join("sci_articles", pdf)
else:
pdf_path = pdf
if extract_doi(pdf):
doi = extract_doi(pdf)
else:
text = '\n'.join(pymupdf.get_text(pdf_path))
doi = extract_doi(text)
if not doi:
print(f"\nCould not find DOI for {pdf}\n")
return
if arango.db.collection("sci_articles").get(arango.fix_key(doi)):
print(f"Article {doi} already in database")
return
# Get metadata from Crossref
crossref_info = get_crossref(doi)
# Extract text from PDF
md_pages = pymupdf4llm.to_markdown(pdf_path, page_chunks=True, show_progress=False)
md_text = ""
for page in md_pages:
md_text += f"{page['text'].strip()}\n@{page['metadata']['page']}@\n"
# Remove multiple '--' in text
md_text = re.sub(r"[-]{3,}", "", md_text)
md_text = re.sub(r"\n{3,}", "\n\n", md_text)
better_chunks = []
chunks = ts.chunks(md_text)
# Merge chunks that are too short
for chunk in chunks:
if len(chunk) < 80: # Get rid of short chunks like headers
continue
elif all(
[
len(chunk) < int(max_characters / 3), # TODO Are those values good?
len(chunks[-1]) < int(max_characters * 1.5),
len(better_chunks) > 0,
]
):
better_chunks[-1] += chunk
else:
better_chunks.append(chunk.strip())
# Lists for ChromaDB
ids = []
documents = []
metadatas = []
# List for ArangoDB
arango_chunks = []
# Create page references and append to lists
last_page = 1
for i, chunk in enumerate(better_chunks):
page_numbers = re.findall(r"@(\d+)@", chunk)
if page_numbers == []:
page_numbers = [last_page]
else:
last_page = page_numbers[-1]
id = arango.fix_key(doi) + f"_{i}"
ids.append(id)
metadatas.append(
{
"_key": arango.fix_key(doi),
"doi": doi,
"file": f"sci_articles/{doi}.pdf",
"chunk_nr": i,
"pages": ",".join([str(i) for i in page_numbers]),
}
)
chunk = re.sub(r"@(\d+)@", "", chunk)
documents.append(chunk)
arango_chunks.append({"text": chunk, "pages": page_numbers})
chroma_col.add(ids=ids, documents=documents, metadatas=metadatas)
arango_document = {
"_key": arango.fix_key(doi),
"doi": doi,
"file": f"sci_articles/{doi}.pdf",
"chunks": arango_chunks,
"text": md_text,
"metadata": crossref_info,
}
arango.db.collection("sci_articles").insert(
arango_document, overwrite=True, overwrite_mode="update"
)
print(f"Inserted article {doi} into database")
return doi
def add_pdfs(path_folder):
pdf_in_folder = [file for file in os.listdir(path_folder) if file.endswith(".pdf")]
for pdf in pdf_in_folder:
process_pdf(pdf)
if __name__ == "__main__":
add_pdfs(path_folder)