import os import re import crossref_commons.retrieval as crossref import pymupdf import pymupdf4llm from semantic_text_splitter import MarkdownSplitter from _arango import ArangoDB from _chromadb import ChromaDB arango = ArangoDB() chromadb = ChromaDB() # Initialize the chroma database chroma_col = chromadb.db.get_collection("sci_articles") max_characters = 2200 ts = MarkdownSplitter(max_characters) path_folder = "sci_articles" def get_crossref(doi): try: work = crossref.get_publication_as_json(doi) # Determine the best publication date if "published-print" in work: publication_date = work["published-print"]["date-parts"][0] elif "published-online" in work: publication_date = work["published-online"]["date-parts"][0] elif "issued" in work: publication_date = work["issued"]["date-parts"][0] else: publication_date = [None] publication_year = publication_date[0] metadata = { "doi": work.get("DOI", None), "title": work.get("title", [None])[ 0 ], # Extract the first title if available "authors": [ f"{author['given']} {author['family']}" for author in work.get("author", []) ], "abstract": work.get("abstract", None), "journal": work.get("container-title", [None])[ 0 ], # Extract the first journal title if available "volume": work.get("volume", None), "issue": work.get("issue", None), "pages": work.get("page", None), "published_date": "-".join( map(str, publication_date) ), # Join date parts with hyphens "published_year": publication_year, "url_doi": work.get("URL", None), "link": ( work.get("link", [None])[0]["URL"] if work.get("link", None) else None ), "language": work.get("language", None), } return metadata except Exception as e: print(f"Error retrieving metadata for DOI {doi}: {e}") return None def extract_doi(text): # Define the regex pattern for DOI doi_pattern = r"10\.\d{4,9}/[-._;()/:A-Za-z0-9]+" # Find the first doi in the text, if there is any doi = re.search(doi_pattern, text) if doi: # Return the first doi found doi = doi.group() doi = doi.strip('.').replace('.pdf', '') return doi else: return None def process_pdf(pdf): if '/' not in pdf: pdf_path = os.path.join("sci_articles", pdf) else: pdf_path = pdf if extract_doi(pdf): doi = extract_doi(pdf) else: text = '\n'.join(pymupdf.get_text(pdf_path)) doi = extract_doi(text) if not doi: print(f"\nCould not find DOI for {pdf}\n") return if arango.db.collection("sci_articles").get(arango.fix_key(doi)): print(f"Article {doi} already in database") return # Get metadata from Crossref crossref_info = get_crossref(doi) # Extract text from PDF md_pages = pymupdf4llm.to_markdown(pdf_path, page_chunks=True, show_progress=False) md_text = "" for page in md_pages: md_text += f"{page['text'].strip()}\n@{page['metadata']['page']}@\n" # Remove multiple '--' in text md_text = re.sub(r"[-]{3,}", "", md_text) md_text = re.sub(r"\n{3,}", "\n\n", md_text) better_chunks = [] chunks = ts.chunks(md_text) # Merge chunks that are too short for chunk in chunks: if len(chunk) < 80: # Get rid of short chunks like headers continue elif all( [ len(chunk) < int(max_characters / 3), # TODO Are those values good? len(chunks[-1]) < int(max_characters * 1.5), len(better_chunks) > 0, ] ): better_chunks[-1] += chunk else: better_chunks.append(chunk.strip()) # Lists for ChromaDB ids = [] documents = [] metadatas = [] # List for ArangoDB arango_chunks = [] # Create page references and append to lists last_page = 1 for i, chunk in enumerate(better_chunks): page_numbers = re.findall(r"@(\d+)@", chunk) if page_numbers == []: page_numbers = [last_page] else: last_page = page_numbers[-1] id = arango.fix_key(doi) + f"_{i}" ids.append(id) metadatas.append( { "_key": arango.fix_key(doi), "doi": doi, "file": f"sci_articles/{doi}.pdf", "chunk_nr": i, "pages": ",".join([str(i) for i in page_numbers]), } ) chunk = re.sub(r"@(\d+)@", "", chunk) documents.append(chunk) arango_chunks.append({"text": chunk, "pages": page_numbers}) chroma_col.add(ids=ids, documents=documents, metadatas=metadatas) arango_document = { "_key": arango.fix_key(doi), "doi": doi, "file": f"sci_articles/{doi}.pdf", "chunks": arango_chunks, "text": md_text, "metadata": crossref_info, } arango.db.collection("sci_articles").insert( arango_document, overwrite=True, overwrite_mode="update" ) print(f"Inserted article {doi} into database") return doi def add_pdfs(path_folder): pdf_in_folder = [file for file in os.listdir(path_folder) if file.endswith(".pdf")] for pdf in pdf_in_folder: process_pdf(pdf) if __name__ == "__main__": add_pdfs(path_folder)