diff --git a/example_fetch_docs.py b/example_fetch_docs.py new file mode 100644 index 0000000..ffb1d2b --- /dev/null +++ b/example_fetch_docs.py @@ -0,0 +1,24 @@ +# Example of fetching documents and go though them one by one using Ollama: + +from arango import ArangoClient +import ollama +from arango_ev_class import ArangoDB + + +# Get the documents where "electric car" is mentioned +arango = ArangoDB() +db = arango.db +q = 'FOR doc IN speeches FILTER doc.translation LIKE "%electric car%" RETURN doc' +cursor = db.aql.execute(q) # Modify query +documents = list(cursor) + + +# Go though the documents one by one +for doc in documents: + text = doc['translation'] + prompt =f"""Below is a transcript of a speech given in the European Parliament. I'm interested in all arguments related to electric cars. + \n{text}\n + Please give me a list of all arguments related to electric cars in the text above. One argument per line. +Answer ONLY with the arguments. Kepp to the information in the text.""" #TODO Make a better prompt! + + arguments = ollama.generate(prompt=prompt, model='llama3:8b-instruct-q5_K_M', options={'temperature': 0})